|
In set theory and computability theory, Kleene's is a canonical subset of the natural numbers when regarded as ordinal notations. It contains ordinal notations for every recursive ordinal, that is, ordinals below Church–Kleene ordinal, . Since is the first ordinal not representable in a computable system of ordinal notations the elements of can be regarded as the canonical ordinal notations. Kleene (1938) described a system of notation for all recursive ordinals (those less than the Church–Kleene ordinal). It uses a subset of the natural numbers instead of finite strings of symbols. Unfortunately, there is in general no effective way to tell whether some natural number represents an ordinal, or whether two numbers represent the same ordinal. However, one can effectively find notations which represent the ordinal sum, product, and power (see ordinal arithmetic) of any two given notations in Kleene's ; and given any notation for an ordinal, there is a recursively enumerable set of notations which contains one element for each smaller ordinal and is effectively ordered. == Kleene's == The basic idea of Kleene's system of ordinal notations is to build up ordinals in an effective manner. For members of , the ordinal for which is a notation is . The standard definition proceeds via transfinite induction and the ordering ) is defined simultaneously. * The natural number 0 belongs to Kleene's and . * If belongs to Kleene's and , then belongs to Kleene's and and . * Suppose is the -th partial recursive function. If is total, with range contained in , and for every natural number , we have , then belongs to Kleene's , for each and , i.e. is a notation for the limit of the ordinals where for every natural number . * and imply (this guarantees that is transitive.) This definition has the advantages that one can recursively enumerate the predecessors of a given ordinal (though not in the ordering) and that the notations are downward closed, i.e., if there is a notation for and then there is a notation for . 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Kleene's O」の詳細全文を読む スポンサード リンク
|